
Week 12 - Wednesday

 What did we talk about last time?
 Exam 3
 Before that:
 Proving problems NP-complete

 A pot contains 75 white beans and 150 black ones
 Next to the pot is a large pile of black beans.
 The (insane) cook removes the beans from the pot, one at a time,

according to the following strange rule:
 He removes two beans from the pot at random
 If at least one of the beans is black, he places it on the bean-pile and drops the

other bean, no matter what color, back in the pot
 If both beans are white, on the other hand, he discards both of them and

removes one black bean from the pile and drops it in the pot
 After each step of this procedure, the pot has one fewer bean in it
 Eventually, just one bean is left in the pot
 What color is it?

 You need to know if your boss gives you the (probably
impossible) task of writing a program to solve an NP-
complete problem

 Trying to understand these reductions will (hopefully) help
you remember a number of NP-complete problems

 Finally, these reductions are impressive accomplishments of
computer science

 We've seen NP-complete problems for sets and satisfying
Boolean variables

 Another important category are sequencing problems where
we want to find the right permutation of a collection of
objects

 How many permutations are there of n objects?

 The traveling salesman problem (TSP) supplies n cities v1, v2,…, vn
 All cities are connected with a directed edge (vi, vj) of length d(vi, vj)
 Starting at city v1, find a tour of minimum distance that visits every

city exactly once and returns to v1
 Applications: routing problems, path planning, circuit layout in VLSI
 Decision version:
 Given a set of distances on n cities and a bound D, is there a tour of length

at most D?

 Given a directed graph G = (V,E), a cycle C in G is a
Hamiltonian cycle if it visits each vertex exactly once

 Decision problem:
 Given a directed graph G, does it contain a Hamiltonian cycle?

I

D

M

N

P

S

B
F

T

R

L

J

O

G
A

E

C

U
Q

H K

 Proof:
 A list of vertices giving such a cycle could be checked in polynomial

time, showing that Hamiltonian cycle is in NP.
 We can reduce 3-SAT to Hamiltonian cycle in the following way.
 Consider an instance of 3-SAT with variables x1, x2, …, xn and clauses

C1,C2,…,Ck

 Imagine a graph with 2n different Hamiltonian cycles, corresponding
to the 2n truth assignments to the variables.

 Specifically, imagine n paths P1,P2,…,Pn
 Pi consists of nodes vi1,vi2,…,vib where b = 3k + 3
 There is an edge from vij to vi,j+1 and an edge from vi,j+1 to vij, in

other words, in both directions
 We hook these paths together by putting edges from vi1 to

vi+1,1 and to vi+1,b and from vib to vi+1,1 and to vi+1,b
 Finally, we add two nodes s and t
 We put edges from s to v11 and v1b, from vn1 and vnb to t, and

from t to s

s

t

3k + 3 nodes

P1 (nodes for x1, first Boolean variable)

P2 (nodes for x2, second Boolean variable)

Pn (nodes for xn, last Boolean variable)

 Only one edge leaves t, so a Hamiltonian cycle must use edge
(t,s)

 From s, the cycle could travel through P1 from the left to the
right or from the right to the left

 After P1, it could travel through P1 from the left to the right or
from the right to the left, and so on, a total of 2n different
cycles

 Each cycle maps to the n independent choices of true or false
for variables x1,x2,…xn

 We want to make it so that traveling through Pi from left to right means
that xi is 1 and traveling through Pi from right to left means that xi is 0

 Consider clause 𝐶𝐶1 = 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3
 C1 means that the cycle should traverse P1 left to right or P2 right to left or

P3 left to right
 To enforce this, we add a node c1 that, for some value l, has edges from

v1l, v2l+1, and v3l and edges to v1,l+1, v2l, and v3,l+1
 Then, c1 can be spliced exactly once into any Hamiltonian path that visits

the P1, P2, or P3 paths in the correct directions
 In general, we make a node cj for every clause and use node positions 3j

and 3j + 1 in each path Pi for variable xi in clause Cj
 Add edges (vi,3j,cj) and (cj,vi,3j+1) if variable is not negated
 Add edges (vi,3j+1,cj) and (cj,vi,3j) if variable is negated

s

t

3k + 3 nodes

P1 (nodes for x1, first Boolean variable)

P2 (nodes for x2, second Boolean variable)

Pn (nodes for xn, last Boolean variable)

C1

C1 (node for first clause)
 Connected to the three Boolean variable paths
 Left-to-right for variables that are not negated
 Right-to-left for variables that are

 If there is a satisfying assignment for 3-SAT, there will be a
Hamiltonian path:
 If xi is 1 in the satisfying assignment, we traverse path Pi left to right
 Otherwise, we traverse Pi right to left
 For each clause Cj, since it's satisfied, there will be at least one path

Pi going the correct direction relative to cj, and it will get spliced in
there

 If there is a Hamiltonian cycle C in G, there will be a satisfying
assignment
 If C enters a node cj on an edge from vi,3j it must depart on an edge to

vi,3j+1

 Otherwise, if C enters a node cj on an edge from vi,3j+1 it must depart
on an edge to vi,3j

 If cycle C visits Pi left to right (ignoring any cj nodes), we set xi to 1
 Otherwise we set xi to 0
 All clauses will be satisfied

∎

 Proof:
 This one is easy. Obviously, it's in NP.
 Now, we reduce Hamiltonian cycle to TSP.
 Given a directed graph G = (V,E) we define an instance of TSP:
▪ Create a city vi for every node vi in the graph.
▪ If there's an edge from vi to vj in the graph, then distance d(vi,vj) = 1
▪ Otherwise, distance d(vi,vj) = 2

 G has a Hamiltonian cycle if and only if there is a tour of
length at most n in the TSP instance:
 If G has a Hamiltonian cycle, then following that sequence of cities

will have n hops of length 1, allowing a TSP tour of length n.
 If TSP has a tour of at most n, it's a sum of n terms which are at least

1, thus all terms are equal to 1. Each pair of connected cities must
have had an edge in the original graph, and following that ordering
must form a Hamiltonian cycle.

∎

 Hamiltonian path is like Hamiltonian tour except that you
don't have to return to the starting point

 We can do an easy reduction from Hamiltonian cycle to
Hamiltonian path by splitting an arbitrary node v from V into
v' and v''
 v' has all the outgoing edges of v
 v'' has all the incoming edges of v
 Any tour that once went through v must now start at v' and end at v''

 Given a graph G = (V,E) and a bound k, is there a way to color
each node such that no two adjacent nodes have the same
color, using no more than k colors?

 Applications:
 Register allocation
 Assigning campers to tents
 Scheduling jobs that need the same resources
 Assigning wavelengths to communication devices

 Find the smallest number of colors for coloring nodes such
that no two adjacent nodes have the same color

E

A

D

B

F

C

E

A

D

B

F

C

 What about this graph?

 2-coloring is easy: it's the same problem as whether or not a
graph is bipartite

 It turns out that seeing if a graph can be colored with only 3
colors is, in fact, NP-complete

 It's interesting (but difficult to prove) that any map where a
country is contiguous can be colored with 4 colors

 Proof:
 3-color is in NP.
 We can reduce 3-SAT to 3-coloring.
 Recall that 3-SAT has variables x1, x2,…, xn and clauses C1,C2,…,Ck.
 Create graph nodes 𝑣𝑣𝑖𝑖 and �𝑣𝑣𝑖𝑖 for variable 𝑥𝑥𝑖𝑖 and its negation �𝑥𝑥𝑖𝑖.
 We create three special nodes T, F, and B for true, false, and base.

 Join every pair of nodes 𝑣𝑣𝑖𝑖 and �𝑣𝑣𝑖𝑖 with an edge and join both
to B, forming triangles.

 Join T, F, and B with edges, forming another triangle.
 Note that in any 3-coloring of G, nodes 𝑣𝑣𝑖𝑖 and �𝑣𝑣𝑖𝑖 must get

different colors and must be different from B.
 Also, T, F, and B must get all three colors in some

permutation.

 Consider a clause like 𝑥𝑥1 ∨ 𝑥𝑥2 ∨ 𝑥𝑥3
 We want this to mean, at least one of 𝑣𝑣1, 𝑣𝑣2, and 𝑣𝑣3 gets the same color

as T
 For every clause, we attach a special six node subgraph that forces the

top node to be none of the three colors unless one of the variables is true

𝑣𝑣2

T𝑣𝑣1 𝑣𝑣3 F

 A 3-SAT instance is satisfiable if and only if G has a 3-coloring.
 Suppose that the 3-SAT instance is satisfiable. Color T, F, and B arbitrarily

with the three colors. For every i, color 𝑣𝑣𝑖𝑖 the T color if 𝑥𝑥𝑖𝑖 is true and the F
color if �𝑥𝑥𝑖𝑖 is true. Color �𝑣𝑣𝑖𝑖 the only available color. Since at least one term
in each clause is true, we can color the six-node clause graph.

 Suppose that the graph has a 3-coloring. Each node 𝑣𝑣𝑖𝑖 is assigned either
the T color or the F color. Set the 𝑥𝑥𝑖𝑖 variable accordingly. It must be the
case that at least one term in each clause has the value 1. Otherwise, all of
the corresponding nodes in the clause subgraph will have the F color,
which precludes a 3-coloring.

∎

 It's an easy reduction from 3-coloring to k-coloring.
 Just take a graph and add k – 3 nodes.
 Connect them to all other nodes (including each other).
 The graph will be k-colorable if and only if the original graph

was 3-colorable.

 Given natural numbers w1,w2,…,wn and a target W, can you
find a subset of your numbers that adds up to exactly W?

 We're not going to do the reduction, but we could.

 Consider n jobs that we want to run on a machine.
 Each job i has:
 A release time ri which is the earliest it could start
 A deadline di which is when it must be finished by
 A time ti which is the total amount of time it takes to do

 Can we schedule all jobs so that they start at or after their
release times and end at or before their deadlines?

 We can do a reduction from subset sum to scheduling with release times and
deadlines.

 Let S be the sum of all the weights.
 For jobs 1, 2,…n, we let them all have a release time of 0, a deadline of S + 1,

and a duration of wi.
 All jobs can finish, scheduled in any order!

 We add one more job with a release time of W, a deadline of W + 1, and a
duration of 1.

 To make everything fit, we have to schedule a subset of the jobs before W,
filling it exactly, and exactly filling S – W, with the extra job running from W to
W + 1.

W S - W1

 Efficient certification is asymmetric
 A problem is in NP if and only if there is a certificate that can

be checked in polynomial time for a "yes" answer
 If the answer is "no," there's no requirement for a certificate
 How would you give a short certificate that there's no

satisfying assignment for 3-SAT?

 But there is an alternative definition
 Co-NP is the set of all problems for which there is a

polynomial-size certificate if the answer is "no"
 Both Co-NP and NP problems can certainly be solved with

exponential work
 Is Co-NP = NP?
 No one knows!

 Then we would know that P ≠ NP
 Proof:
 Consider the contrapositive: (P = NP) → (NP = Co-NP).
 P is closed under complementation. That means that the negated

problem (all the strings that would give a "no") is also in P.
 𝑋𝑋 ∈ 𝐍𝐍𝐍𝐍 → 𝑋𝑋 ∈ 𝐍𝐍 → �𝑋𝑋 ∈ 𝐍𝐍 → �𝑋𝑋 ∈ 𝐍𝐍𝐍𝐍 → 𝑋𝑋 ∈ 𝐂𝐂𝐂𝐂−𝐍𝐍𝐍𝐍
 𝑋𝑋 ∈ 𝐜𝐜𝐂𝐂−𝐍𝐍𝐍𝐍 → �𝑋𝑋 ∈ 𝐍𝐍𝐍𝐍 → �𝑋𝑋 ∈ 𝐍𝐍 → 𝑋𝑋 ∈ 𝐍𝐍 → 𝑋𝑋 ∈ 𝐍𝐍𝐍𝐍
 Thus, NP = co-NP.
 But, because the contrapositive is logically equivalent, that means that

(NP ≠ Co-NP) → (P ≠ NP).
∎

 It's true that P⊆ (NP∩ Co-NP)
 But opinions are mixed as to whether there might be

problems in NP∩ Co-NP that cannot be solved in polynomial
time

 Maybe you can find the answer!

 A little bit of theory of computing
 Approximation algorithms
 Load balancing
 Center selection

 Read sections 11.1 and 11.2

 Assignment 6 due Friday!

	COMP 4500
	Last time
	Questions?
	Assignment 6
	Logical warmup
	Three-Sentence Summary Listing Lots of NP-Complete Problems
	Showing Lots of Problems are NP-Complete
	Why are we showing that lots of problems are NP-complete?
	Sequencing problems
	Traveling salesman problem
	Hamiltonian cycle problem
	Find a Hamiltonian Cycle
	Hamiltonian cycle is NP-complete
	Proof continued
	What does that look like?
	Why did we do all that?
	How?!
	It gets worse!
	Does that work?
	Does that work? (continued)
	Traveling salesman is NP-complete
	Proof continued
	Hamiltonian path is NP-complete
	Graph coloring
	Graph coloring
	Graph coloring
	3-coloring a graph
	3-coloring is NP-complete
	Proof continued
	Proof continued
	Proof continued
	k-coloring is NP-complete
	Subset sum is NP-complete
	Scheduling with release times and deadlines
	Scheduling with release times and deadlines is NP-complete
	Co-NP
	Asymmetric certification
	Co-NP
	What if NP ≠ Co-NP?
	Is P = (NP ∩ Co-NP)?
	Upcoming
	Next time…
	Reminders

